

Outline

- Fuji CR
- Fuji CR image formation
- Fuji General description of image processing
 - Automatic sensitivity correction (EDR)
 - Image Processing
 - Gradation
 - Spatial Filtering
 - Multi-objective frequency filtering (MFP)

CR Basics

Computed Radiography refers to the use of Photostimulable Storage Phosphors (PSPs) in image capture and subsequent image digitization for Projection Radiography applications.

PSP – The Imaging Plate

Sizes : (FCR) 17 x 17 (5501/5502) 14 x 17 14 x 14 10 x 12 (24 x 30) 8 x 10 (18 x 24)

Types Available: ST – Standard HR – High Resolution

- EDR- Exposure Data Recognizer
- PRIEF (Pattern Recognizer for Irradiated Exposure Fields)
 - •
 - Recognition of divided exposure patterns
- Histogram Analysis

- Digital imaging is contrast limited wide dynamic range
- FCR digitizes ONLY the necessary range of "Exposure" and convert to 10 bits digital numbers
- The process is based on the acquired "histogram"

Histogram analysis

- Density will be adjusted to be close to film OD
- L value = width of the range
- S value = 4 x 10^ (4-SK)
- Smax-Smin = max and min S (Plate exposure values)
- Q max- Q min = max and min quantized digital values

"L" Value - Latitude

- "L" represents the number of decades covered by exposure
- Each exposure menu has a range that sets the minimum and maximum "L" value
- Typical L values range from 1.6 to 2.3

"S" Number - Sensitivity

It reflects the center of the usable portion of the histogram

Calibration is based on a 1 mR exposure at 80 kVp to the IP. Using a 72[°] distance through air to achieve an "S" number of 200 with a fixed latitude of 1.

Good collimation practices should be used

Your lead marker *Must* be in the exposure area

Avoid Overlapping Exposures

- No Histogram analysis
- ♦ No PRIEF
- "S" number and "L" values are fixed
 - "S" number set by the user
 - "L" value set by the menu selected

- Distance- SID and OFD
- Collimation
- Menu selection
- Delay in processing from time of exposure

"S" Number

An "S" number under 75 is typically considered overexposure

Under exposure is generally represented by an "S" number greater than 500

Typical [*] S [*] # Range			
Chest, General	200-600	Chest, Port.	100-400
Skull	100-400	Abdomen	100-400
Spine	100-400	GI	100-300
Extremities	75-200		
Chest, Pedi.	200-700	Abdomen, Pedi.	200-700
		1	

"S" and "L" Range

- Exposures falling outside recommended range can compromise image quality
 - "S" number below 25 or above 2000 with and an "L" value greater than 2.0
 - Grossly over exposed images could appear light due to EDR over correction of saturated IP

Standard Image Processing for FCR Images

- The seven standard processing parameters can be divided into two groups.
 - <u>Gradation Processing</u>: dealing with image contrast and density.
 - <u>Spatial Frequency Processing</u>: dealing with image enhancement and blurring.
- These parameters can be adjusted to optimize diagnostic accuracy, expanding the diagnostic scope of the image.

Gradation Adjustment

- First, adjust GS to obtain proper density
- Next, vary GA parameter to obtain proper contrast

GT – Frequently used E – Chest G – Latitude type O – Orthopedics

- P General HR-S gradation
- R Mammo (high contrast gradation)

Spatial Frequency Filtering

- Mainly for sharpness control
- Refer as spatial frequency filtering
- Start with "unsharp" masking images
- Process based on Fourier Transformation

Multi-Objective Frequency Processing (MFP)

- Develop to improve image quality provided by image processing
- MFP enhances various structures at the same time
 - Grey-scale shadow and shape shadows can be enhanced in a well balance manner without sacrificing the graininess
 - Invisible areas can be depicted with an increase degree of naturalness (improve DR control process)
 - The degree of enhancement is suppressed for metals and other extraneous to the human body

